Spaces of Operator-valued Functions Measurable with Respect to the Strong Operator Topology

نویسنده

  • OSCAR BLASCO
چکیده

Let X and Y be Banach spaces and (Ω,Σ, μ) a finite measure space. In this note we introduce the space L[μ;L (X, Y )] consisting of all (equivalence classes of) functions Φ : Ω 7→ L (X, Y ) such that ω 7→ Φ(ω)x is strongly μ-measurable for all x ∈ X and ω 7→ Φ(ω)f(ω) belongs to L(μ; Y ) for all f ∈ L ′ (μ;X), 1/p + 1/p = 1. We show that functions in L[μ;L (X, Y )] define operator-valued measures with bounded p-variation and use these spaces to obtain an isometric characterization of the space of all L (X, Y )-valued multipliers acting boundedly from L(μ;X) into L(μ; Y ), 1 6 q < p < ∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure &theta; : R &rarr; L(P, Q), where R is a &sigma;-ring of subsets of X&ne; &empty;, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009